‘Construction fever’ responsible for one fifth of China’s CO2 emissions

‘Construction fever’ responsible for one fifth of China’s CO2 emissions

Carbon Brief, Josh Gabbatiss

***

The construction and demolition of buildings in China was responsible for nearly a fifth of the nation’s annual CO2 emissions in 2015, according to a new study.

The world’s largest emitter has seen building rates soar as existing structures are torn down and replaced with skyscrapers to house the nation’s rapidly urbanising population.

All of this comes with a significant carbon footprint, both to produce the cement, steel and other materials required and from the emissions produced once the project is underway.

The researchers behind the new study, published in the Journal of Cleaner Production, say this has not received enough attention in China, despite being an “unignorable and critical” component of the nation’s emissions.

However, other academics Carbon Brief talked to said that while China’s construction “boom” is undoubtedly carbon-intensive, there are “issues” with the methods used in this analysis.

‘Construction fever’

A growing urban population and land scarcity have contributed to significant growth in construction – particularly of high-rise buildings – across China.

Since 2010, China has been responsible for around half of the world’s growth in construction, with many buildings only standing for around 30 years before being demolished. 

Their construction, maintenance and demolition all come with a carbon cost. Previous studies have estimated that the energy consumption of China’s building sector has more than tripled since 2001.

Xinyi Shen from Greenpeace East Asia tells Carbon Brief that, given this, it is not surprising that China’s “construction fever” is a primary driver of its emissions.

However, in the new study, a team led by PhD candidate Weina Zhu of Tsinghua University, make the distinction between “operational” and “embodied” CO2 emissions, emphasizing the need to focus on the latter.

Embodied CO2 is defined in the paper as total emissions from “building materials manufacturing and transportation, building construction, maintenance and demolition”. Operational emissions are those arising from day-to-day energy use – for example, lighting, heating and cooling.

The authors say that operational carbon is generally assumed to be the primary contributor to the sector’s emissions, meaning strategies have focused on improving the energy efficiency of buildings.

However, they say that if China is to hit its climate target of peaking emissions in 2030, it will need to make embodied emissions a priority.

Time lapse showing the development that has taken place in Shanghai between 1984-2018. Source: Google Earth Engine

Bottom-up and top-down

The researchers looked at building activity throughout 2015, a year when Chinese economic stimulus – and the construction it helps drive – was reportedly at relatively low levels.

To estimate the embodied CO2 for construction that year – excluding civil engineering projects, such as bridges and roads – the researchers used two different approaches.

First, they used a process-based assessment. This was a “bottom-up” method that involved working out the total emissions of all the processes feeding into Chinese construction, from chemical reactions in cement factories to machinery used on building sites.

For the second assessment they used an input-output model. This was a “top-down” approach for which the team took national data and isolated the relevant components.

One of the paper’s co-authors, Dr Wei Feng, tells Carbon Brief this is “the first systematic analysis” of China’s embodied CO2 emissions using both of these methods.

Results based on the process approach showed that the embodied carbon in the Chinese building sector for that year was 1,422m tonnes of CO2 (MtCO2), while the input-output method settled on 1,600MtCO2.

Based on the upper estimate, they note this was approximately 18% of total Chinese emissions reported in 2015.

Residential buildings had around twice the emissions cost of non-residential buildings. The study notes how China’s housing has shifted from brick and wood to reinforced concrete and steel high-rise structures.

Crucially, the researchers say their estimate puts embodied CO2 roughly on a par with past estimates of operational CO2.

Dr Francesco Pomponi, an engineer at Edinburgh Napier University who was not involved in the study, tells Carbon Brief this seems more plausible than many other comparisons between operational and embodied CO2:

“Previous assessments we have had suggested 20% embodied, 80% operational or less than that, whereas this study is pointing towards a more realistic picture – about half and half.”

As a comparison, a report from last year by the World Green Building Council concluded 11% of annual global emissions were from carbon embodied in building construction processes. Nearly three times as much came from operational building emissions.

While around 10% of European states’ annual emissions can be traced to embodied building carbon, Pomponi says a value of roughly double this seems accurate for an economy such as China.

“I go every year so I see the difference year after year in how much built stock was added in 12 months,” he says.

‘Red flags’

However, Dr Jannik Giesekam, an industrial climate policy researcher at the University of Leeds who has worked extensively in this area but was not involved in the study, tells Carbon Brief he identified numerous “red flags” in the research.

While he thinks the researchers probably arrived at the right “ballpark figure”, he has “major” issues with the paper that he thinks compromise the results.

One of the key points he identified was that the paper overlooked a lot of pre-existing work on embodied carbon, including databases prepared by industry “in favour of a selective set of case studies”.

He also says the paper does not make a comparison with previous estimates for China or to previous systematic reviews prepared by the likes of the International Energy Agency (IEA).

While acknowledging some of these points as valid, Feng says they chose case studies that reflect current Chinese common practices and that they could not retrieve the relevant emissions data from the industry databases Giesekam suggests. 

“Overall, it would be different and unrealistic to use international emission data and best practices to represent China’s emission in 2015,” he tells Carbon Brief.

For his part, Pomponi says that while Giesekam’s criticism is valid, he sees things “slightly differently”. He says: “I think it’s impossible that a study incorporates everything that’s out there.”

Giesekam also notes what he sees as some unusual choices in the way the researchers carried out the study, including a lack of detail in both their “bottom-up” and “top down” calculations – for example, giving all steel the same “carbon factor”.

Feng says that while they would “love this study to go deeper” and describes his team’s work in this area as on-going, he notes they used a “simple approach” that involved taking averages of steel and cement data:

“That is why we also employ a top-down method to cross-validate the bottom-up method calculation to make sure the total emission results match with each other.”

To this point, Pomponi tells Carbon Brief it is “inevitable to sacrifice depth for breadth in academic research” and says that, while there are certainly issues with the paper, he thinks it is valuable to see different methods being used to assess embodied carbon:

“It’s really good they used two [approaches] and compared them. They are extremely different methods so it’s good that they seem to point to the same number.”

Construction workers on a residential building site in Huaian city, China. Credit: Imaginechina Limited / Alamy Stock Photo.

Cutting embodied CO2

The researchers say that on a global scale, the relatively limited attention paid to embodied carbon is preventing an accurate assessment of the building sector’s environmental impacts.

Dr Danielle Densley Tingley, an architectural engineer at the University of Sheffield who was not involved in the work, says these emissions are generally not given sufficient attention by nations setting climate targets. She tells Carbon Brief this is partly due to the way they are reported:

“They’re often lumped into ‘industrial emissions’. This focuses on the production of the materials – where there are only small efficiencies left to gain – but doesn’t really look at how the materials are then used, what is driving their consumption etc.”

She says better design and a focus on “deep retrofits” instead of demolition would help cut embodied emissions in buildings. Pomponi agrees that design lies at the heart of this issue:

“At the moment we are inefficient in the sense that we put more material than is actually needed into buildings … Firms tend to go with ‘rules of thumb’ or things that worked in the past rather than starting from scratch.”

Measures have been proposed to cut these emissions in some countries. The World Green Building Council has set a target of 40% less embodied carbon in all new buildings, infrastructure and renovations by 2030.

The authors of the new study estimate that, despite a focus on operational carbon emissions in China, the annual potential for reductions in the building sector could actually be larger for embodied than operational CO2.

Greenpeace East Asia’s Shen says that after years of intensive construction the situation is shifting and, going forward, the Chinese authorities are going to have to be “extremely careful” about what they build:

“The country has entered into a new stage of development in that blindly putting up more infrastructure is not only environmentally unsustainable but also will not keep the same investment return the country yielded in the last decades.”

Zhu, W. et al. (2020) Analysis of the embodied carbon dioxide in the building sector: A case of China, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2020.122438

***

‘Construction fever’ responsible for one fifth of China’s CO2 emissions

Josh Gabbatiss

Originally published under a CC license by Carbon Brief on 9 June 2020

Published under a CC license. You are welcome to reproduce unadapted material in full for non-commercial use, credited ‘Carbon Brief’ with a link to the article.

IEA: Coronavirus ‘accelerating closure’ of ageing fossil-fuelled power plants

IEA: Coronavirus ‘accelerating closure’ of ageing fossil-fuelled power plants

Josh Gabbatiss, Carbon Brief, 27 May 2020

***

This year will see the largest ever drop globally in both investment and consumer spending on energy as the coronavirus pandemic hits every major sector, according to the International Energy Agency (IEA).

The crisis is accelerating the shutdown of older fossil-fuelled power plants and refineries, with the agency saying it could provide an opportunity to push the global energy sector onto a “more resilient, secure and sustainable path”.

In the latest edition of the World Energy Investment report, which Carbon Brief has covered in previous years, the IEA has gone beyond its usual remit of reviewing annual trends. 

Its analysis looks ahead to the coming year and estimates the impact of this year’s economic turmoil on energy investment, which was expected to grow by around 2% prior to Covid-19. It is now expected to drop by 20%, or almost $400bn.

Meanwhile, as demand and prices collapse, consumer spending on oil is expected to drop by more than $1tn, prompting a “historic switch” as spending on electricity exceeds oil for the first time.

Here, Carbon Brief has picked out some key charts to illustrate the economic repercussions of the pandemic across the energy sector.

Energy investment will drop by a fifth

The “baseline expectation” for 2020 is a global recession resulting from widespread lockdowns, according to the IEA. Last month, the agency estimated this will also lead to CO2 emissions dropping by 8% this year in the largest decline ever recorded.

Based on the latest investment data and project information, announcements from companies and governments, interviews with industry figures and its own analysis, the IEA concludes such a recession will see energy investment drop by a fifth. This can be seen in the chart below.

Energy investment is set to fall by a fifth in 2020 due to the coronavirus pandemic. Fuel supply (red) includes all investments associated with the production and provision of fuels to consumers, consisting mainly of oil, gas and coal investments. Power sector (blue) includes spending on power-generation technologies, grids and storage. Energy end use and efficiency (yellow) includes the investment in efficiency improvements across all end-use sectors. Source: IEA
Energy investment is set to fall by a fifth in 2020 due to the coronavirus pandemic. Fuel supply (red) includes all investments associated with the production and provision of fuels to consumers, consisting mainly of oil, gas and coal investments. Power sector (blue) includes spending on power-generation technologies, grids and storage. Energy end use and efficiency (yellow) includes the investment in efficiency improvements across all end-use sectors. Source: IEA

These estimates are based on assumptions about the duration of lockdowns and coronavirus recovery trajectories.

The IEA notes that “almost all” investment activity has been disrupted by these measures, as a result of restrictions to the movement of people, goods and equipment. 

However, the largest impacts are the result of declines in revenues due to falling demand and prices, with the clearest example coming from the oil sector. Analysis of daily data until mid-April suggests countries in full lockdown have seen energy demand drop by a quarter.

As a result, the agency also estimates that these factors, combined with a rise in cases of people not paying their energy bills, will see revenues going to both governments and industry fall by over $1tn this year.

Crisis ‘accelerating’ shift from low-efficiency technologies

Every year energy infrastructure is retired and replaced with new equipment. Typically, the replacement technologies will be cleaner and more efficient, although this is not always the case. 

The coronavirus crisis is expected to have an impact on this rate of turnover and, indeed, it is already contributing to the retirement of some older power plants and facilities, as the chart below illustrates.

The Covid-19 crisis is hastening the retirement (light blue) of some older plants and facilities, but also impacting consumer spending on new and more efficient technologies (dark blue), with the potential for a net decrease (yellow dot) in upstream oil-and-gas facilities. Source: IEA.
The Covid-19 crisis is hastening the retirement (light blue) of some older plants and facilities, but also impacting consumer spending on new and more efficient technologies (dark blue), with the potential for a net decrease (yellow dot) in upstream oil-and-gas facilities. Source: IEA.

The economic downturn and “surfeit of productive capacity in some areas” as overall demand plummets is already “accelerating” the closure and idling or inefficient technologies, including refineries and some coal-fired power plants.

However, the IEA warns that equally governments might respond to the pandemic by underinvesting in new technologies and remaining reliant on inefficient, older technology. The agency estimates efficiency investment could drop by 10-15% as spending is cut back.

The report warns that policymakers should keep these elements in mind and “combine economic recovery with energy and climate goals”. Dr Fatih Birol, executive director of the IEA, said in a statement that while the pandemic has brought lower emissions it has been “for all the wrong reasons”:

“The response of policymakers – and the extent to which energy and sustainability concerns are integrated into their recovery strategies – will be critical.”

Clean energy spending ‘relatively resilient’

The share of global energy spending going towards clean energy, including renewables as well as nuclear and efficiency improvements, has been flat-lining at around one-third for the past few years.

As the chart below shows, this is likely to change this year as clean energy’s share edges closer to two-fifths of overall spending.

Breakdown of clean energy investment by sector in USD (left x-axis), with the % overall share (right x-axis) of spending indicated by a grey line. Source: IEA.

Clean energy investment is expected to remain “relatively resilient” this year, with spending on renewable projects falling by a comparatively small 10%. 

However, according to the IEA, the main reason for clean energy increasing its share is that fossil fuels are set to take such a “heavy hit”. In absolute terms, spending on these technologies is “far below levels” required to accelerate energy transitions.

The agency notes that investment trends have long been “poorly aligned” with the world’s needs and are still set to fall short of the future it has outlined in its benchmark Sustainable Development Scenario (SDS).

Last year’s edition of the World Energy Investment report concluded that investment in low-carbon energy sources must more than double by 2030 if the world is to meet its Paris Agreement targets.

While the slowdown in clean energy spending is less significant, it still “risks undermining the much-needed transition to more resilient and sustainable energy systems,” according to Birol.

Power sector hit hard

International power investment is set to drop by 10% as a result of the Covid-19 pandemic, according to the agency. 

Virtually every component of the sector is expected to see a decline in investment, with hydro the only exception, as the chart below demonstrates.

Global investment in the power sector by technology, with figures from the previous three years and estimates for 2020 (yellow). Source: IEA.
Global investment in the power sector by technology, with figures from the previous three years and estimates for 2020 (yellow). Source: IEA.

Increases in residential electricity demand around the world during lockdown are being “far outweighed” by reductions in commercial and industrial operations, the agency reports. A 9% decline in spending on electricity networks this year is also expected.

The IEA says some parts of power investment are more exposed, specifically fossil fuel-based generation. 

Meanwhile, higher shares of renewables are being dispatched due to low operating costs and priority access to networks. Nevertheless, renewables are still taking a hit, particularly distributed solar photovoltaics (PV) as households and companies cut back on spending.

Technologies with a longer lead time, notably offshore wind and hydropower, are expected to do better despite some delays.

Electricity spending pulls ahead of oil

Oil accounts for most of the decline in revenues expected this year. Furthermore, in a “historic switch” consumer spending on electricity could exceed spending on oil for the first time ever. 

While power-sector revenues are expected to fall by $180bn, oil spending will likely drop by at least $1tn. This can be seen in the chart on the left below. Taken together, investment in oil and gas is expected to fall by almost a third in 2020. 

Both global end-use spending by consumers on energy (left) and estimated 2020 investment compared to 2019 show oil is expected to see the biggest decline in investment activity this year. Source: IEA.

The decline in aviation and road transport, which represent nearly 60% of oil demand, are responsible for this disproportionate decline.

Meanwhile, the impact on gas has so far been more moderate, but could fall further due to reduced demand in power and industry settings.

The report also highlights the global shale sector, which was already under pressure, as being particularly vulnerable. 

With investor confidence and access to capital in decline, the IEA predicts shale investment will halve in 2020 and notes the outlook for “highly leveraged shale players in the US” is now “bleak”.

Coal decline given a ‘floor’ by China

Coal is estimated to be the fuel hardest hit by the crisis after oil. Coal demand could drop by 8% this year, investment in coal supply is set to fall by a quarter and spending on new coal-fired plants is set to fall by around 11%.

However, any decline in coal’s fortunes may be curtailed by the recovery of demand for the fossil fuel in China. According to the IEA, investment activity there “may put a floor” under further reductions in coal-power investment this year.

The nation’s focus on coal is illustrated in the chart below, which shows final investment decisions (FIDs) dropping to their lowest levels in a decade, but China providing virtually all of them in the year so far.

Coal-fired power generation capacity (GW) subject to a final investment decision (FID), with China coloured in green. Source: IEA.
Coal-fired power generation capacity (GW) subject to a final investment decision (FID), with China coloured in green. Source: IEA.

Using data available so far, the IEA notes that approvals for new coal plants in the first quarter of 2020, were “running at twice the rate observed over 2019 as a whole”, primarily in China.

Electric vehicle sales rising as overall market contracts

Last year was a difficult time for the car industry, with total sales growth slowing in all major regions and turning negative in China and the US.

However, this “turbulent” period for the industry is “likely to appear mild” in comparison with 2020, according to the IEA. 

Lockdowns have already severely impacted sales and, across the year, the agency estimates a drop of around 15% – dramatic even compared to the 10% drop that followed the 2008 financial crisis. Negative trends in overall car sales can be seen in the right-hand chart below.

Global sales of electric passenger vehicles – cars, vans and small trucks – and market share, indicated by a red line (left chart). Total light-duty vehicle sales (right). Source: IEA.
Global sales of electric passenger vehicles – cars, vans and small trucks – and market share, indicated by a red line (left chart). Total light-duty vehicle sales (right). Source: IEA.

However, even though electric vehicle sales followed wider patterns and stalled in 2019 largely due to declining Chinese purchases, their overall market share continued to climb. 

This can be seen in the chart on the left, which shows that electric cars are expected to go against the broader trend in 2020. The IEA estimates that owing to policy support, particularly in Europe, electric vehicle sales will increase this year, as will their share of the market (indicated by the red line).

Battery storage spending fell as prices dropped

Investment in battery storage fell for the first time last year, as the chart below shows. Overall, spending on grid-scale and behind-the-meter batteries fell by 15%, with overall investment just above $4bn.

Investment in both grid-scale (left) and behind-the-meter battery storage (right). Source: IEA.
Investment in both grid-scale (left) and behind-the-meter battery storage (right). Source: IEA.

The IEA states this decline took place as costs for battery storage fell rapidly, a trend the agency attributes to maturing supply chains and markets, more efficient production and competition within the sector.

The report mentions fires at energy storage installations in South Korea and regulation uncertainty in China as some of the factors behind the decline in interest last year.

Declining behind-the-meter battery spending also reflects the distributed solar PV market, for which investment slowed last year in a trend expected to continue as consumer spending drops off due to coronavirus.

The agency notes that grid-scale battery investments are also expected to decline this year against the backdrop of a general decrease in power activity. 

However, it says this setback “is likely to be shortlived” due to the technology’s growing importance for system security and flexibility. 

***

IEA: Coronavirus ‘accelerating closure’ of ageing fossil-fuelled power plants

Josh Gabbatiss, Carbon Brief, 27 May 2020

Published under a CC license. Carbon Brief welcomes the reproduction of unadapted material in full for non-commercial use, credited ‘Carbon Brief’ with a link to the article.

intentionality & the post-covid cultural landscape

Individually we are no match for nature. Together we are.

Stewart Simonsen, Assistant Director-General, World Health Organization; in conversation with Fareed Zakaria, GPS, 24 May 2020

Congress will have to think with knowledge that we will have another crisis.”

Gary Cohn, Former Director, National Economic Council, Former President & Chief Operating Officer, Goldman Sachs, in conversation with Fareed Zakaria, GPS, 24 May 2020

Given the health, governance, and legal risks posed by the coronavirus and the covid-19 response, a primary issue affecting us all, including galleries, museums, and cultural organizations around the world, has been how to limit its spread. As a prophylactic vaccine has not yet been developed, decisions were made to limit possible exposure and contagion by distancing people from one another. In many countries all organizations and enterprises except those providing what have been considered “essential” services were closed, museums included.

Museums are public spaces that welcome people through their doors into shared spaces to look at art together. They have had to grapple with the questions of whether or not and how to engage their audiences while closed. They grapple now with the question of how best to re-open while continuing to mitigate the risk of contagion and spread.

The learning curve has been steep and rapid. Marc Spiegler, Global Director of Art Basel, and museum leaders from Asia, Europe, and the United States addressed the learning curve and responses of the museum sector during a webinar discussion that took place on 21 May,  “How will the pandemic change institutions?

Dr. Zoé Whitley, director of the Chisenhale Gallery, London, Anne Pasternak, Shelby White and Leon Levy Director of the Brooklyn Museum, New York City, Phlip Tinari, director and CEO of the UCCA Center for Contemporary Art, Beijing, and Dr. András Szántó, author and cultural strategy advisor, New York City, shared their thoughts and perspectives on the missions, priorities, and activities of their organizations, how they were managing during the pandemic and concomitant shut-down, risks, risk management, and ways to make it possible to be back in physical spaces looking at art with other people.

“What roles should institutions play in the post-covid cultural landscape, assuming you can even guess what the landscape is going to be?”

Acknowledging that “we have a responsibility to re-think how we remain relevant to our audiences,” Dr. Whitley asked, “how do you start charting a new path under these incredibly strange circumstances?”

“I think that’s precisely the question,” she continues. “What might rank as the world’s worst hypothetical interview question: how would you lead an organization remotely in the midst of a global pandemic? And you would think it was so absurd as to be not really be able to entertain it. And yet here we are.”

While understanding that the pandemic and the global response caught many off guard, knowing what we now know, we may need to revisit underlying assumptions of absurdity and re-map our thinking. The pathogen and pandemic did not come out of nowhere.  See: “Q&A: Could climate change and biodiversity loss raise the risk of pandemics?“.

Pathogens such as the coronavirus that is causing the covid-19 response occur abundantly in nature. As we, through our many behaviors, draw closer to wild animals, for instance, and draw them closer to us, and unless we work consistently and with intention to acknowledge, manage, and mitigate risk, we may expect ever more such pandemics.

The UCCA Center for Contemporary Art in Beijing may serve as a case study. Having closed its doors on 24 January, the UCCA re-opened to the public on 21 May. 

Philip Tinari reflected on the disappearance of everyday routine during the closure, the mood of solemnity of everyday existence, the poignancy of being back in physical space looking at art with people,  and the freedom to enter into a public space and look at art.

He observed that while “it’s poignant and it’s just wonderful to be back in physical space looking at art with people, … that can only happen because of larger dynamics in the society.”

“The freedom to enter into a public space and look at art,” the freedom to enter the UCCA Center for Contemporary Art, and Beijing’s 798 Art District in which it is located, is afforded by measures taken to control the contagion and spread.

“To even enter into 798, one needs to have one’s temperature taken and one needs to show a kind of virtual pass which is generated by a government app that, you know, tracks your data and proves that you have not been in any high-risk areas for the last 14 days or 21 days, and even, in some cases, synchs to facial-recognition thermometers that are around town. So, there’s a complete panopticon, and we’re the indirect beneficiaries of it.

“And at our door, there’s another temperature check as there is at the entrance of any restaurant or store. And masking here is completely mandatory and universal. And so then it just becomes a question of how to be responsible and keep things disinfected and use our guards to keep people distanced.

From “How technology is safeguarding health and livelihoods in Asia,” Oliver Tonby, Jonathan Woetzel, Noshir Kaka, Wonsik Choi, Jeongmin Seong, Brant Carson, and Lily Ma,McKinsey & Company, 12 May 2020

“I guess all to say that we’re all kind of working inside the contexts where we find ourselves. And this one, for the draconian nature of certain measures, they paradoxically allow for the freedom to enter into a public space and look at art.”

As risks abound, continue, and even, arguably, increase, it is crucial to plan and conduct business smartly, in a forward-looking manner, clearly articulating desired outcomes, on the one had, and negative externalities, that are increasingly no longer external, on the other.

UCCA has postponed shows that were on the calendar for this year, “many of which involved intense overseas collaborations and were not going to happen as scheduled.” Yet, learning as early as early March that the museum re-opening would take place on 21 May, the first date also of the re-scheduled Beijing Gallery Week-end, Mr. Tinari and the museum curators realized “that there was no way we could get to May 21 and not have something to show everyone.”

“And so I sat in a room with my curators for about a week. And we came up with an exhibition that we titled “Meditations in an Emergency” after the Frank O’Hara anthology which kind of looks at the post-covid world from five different angles. Everything from the disappearance of everyday routine to the relationship between humans and animals to the proliferation of a sort of de-centered polyphonic or contradictory narrative around news and information.

“It’s a 26-artist group show that’s actually, I don’t mean to brag or anything, but it’s really beautifully installed. And it’s poignant and it’s just wonderful to be back in physical space looking at art with people.”

Zhang Hui, “Just Line in the Mirror 2” (2018, oil on canvas).
Credit: Zhang Hui and UCCA, Center for Contemporary Art, Beijing: “Meditations in an Emergency,” 21 May – 30 August 2020

Thinking forward, Mr. Tinari observes “a certain solemnity to just everyday existence now. People are ready to come. And in a way that’s a very not the worst frame of mind with which to enter into an exhibition.”

What he’s been calling “the new intentionality,” engaging in activities “with a very specific purpose and for a limited duration,” applies, he says, to programming as well. “It’s not that we won’t continue to do big international shows but we’ll do them for specific reasons with kind of very measurable goals in more measured ways.”

See:

Art Basel, “How will the pandemic change institutions?“, YouTube, 22 May 2020

Oliver Tonby, Jonathan Woetzel, Noshir Kaka, Wonsik Choi, Jeongmin Seong, Brant Carson, and Lily Ma, “How technology is safeguarding health and livelihoods in Asia,” McKinsey & Company, 12 May 2020

Zoé Whitley, Star Curator Behind Acclaimed ‘Soul of a Nation’ Show, Named Director of London’s Chisenhale Gallery,” ARTnews, 17 January 2020

UCCA, Center for Contemporary Art, Meditations in an Emergency, 21 May 2020 – 30 August 2020


Daily global CO2 emissions ‘cut to 2006 levels’ during height of coronavirus crisis

Daily global CO2 emissions ‘cut to 2006 levels’ during height of coronavirus crisis

Simon Evans, Carbon Brief, 19 May 2020

***

The amount of CO2 being released by human activity each day fell by as much as 17% during the height of the coronavirus crisis in early April, a new study shows.

This means daily emissions temporarily fell to levels last seen in 2006, the study says. In the first four months of the year, it estimates that global emissions from burning fossil fuels and cement production were cut by 1,048m tonnes of CO2 (MtCO2), or 8.6%, compared with 2019 levels.

The research projects a decline of up to 2,729MtCO2 (7.5%) in 2020 as a whole, depending on how the crisis plays out. It is the first to have been through the peer-review process and is broadly in line with an early estimate for China published by Carbon Brief in February, as well as separate global estimates published last month by Carbon Brief and the International Energy Agency.

Today’s study also marks the first-ever attempt to quantify CO2 emissions on a daily basis, for the world and for 69 individual countries, in close to real time. Until now, annual CO2 emissions data has typically been published months or even years later.

A publicly available daily estimate of global or national CO2 emissions would be “incredibly useful, particularly for motivating policy action and pressure”, another researcher tells Carbon Brief.

Coronavirus crisis

The ongoing coronavirus crisis has claimed the lives of hundreds of thousands of people around the world and seen the introduction of severe restrictions on movement in many countries.

These lockdowns have included “stay at home” orders, border closures and other measures that have had direct effects on the use of energy and, consequently, on the release of CO2 emissions.

As the crisis has unfolded, so too have attempts to quantify its impact on CO2 emissions. These efforts have been challenging, however, because real-time CO2 emissions data does not exist.

The annual emissions inventories that countries submit to the UN take years to compile – and even these are estimates rather than direct measurements.

Greenhouse gas emissions are estimated using a variety of methods, often based on “activity data”. This might be the number of miles being driven, the amount of electricity generated or even – in the case of nitrous oxide, which is used as a propellant  – via cream consumption.

Today’s study, published in Nature Climate Change, combines activity data for six sectors with a “confinement index” of lockdown measures in each country or region over time.

This allows for an estimate of changes in daily global CO2 emissions in January-April 2020, relative to the 100MtCO2 released on an average day in 2019.

During peak confinement in individual countries, daily CO2 emissions fell by 26% on average, the paper says. However, the size of this effect is reduced at a global level, because not all countries were under the most severe type of lockdown at the same time.

At the peak of the crisis in early April, regions responsible for 89% of daily CO2 emissions were under some form of lockdown, the paper says. Daily global CO2 emissions fell to 83MtCO2 (-17%, with a range of -11 to -25%) on 7 April, equivalent to levels last seen in 2006.

In a press release, lead author Prof Corinne Le Quéré, professor of climate change science at the University of East Anglia’s Tyndall Centre (who will be a panelist at Carbon Brief’s webinar on 21 May), says:

“Population confinement has led to drastic changes in energy use and CO2 emissions. These extreme decreases are likely to be temporary, however, as they do not reflect structural changes in the economic, transport, or energy systems.”

Daily data

In order to estimate daily global CO2 emissions, the researchers use a novel approach that combines sectoral activity data with a country-by-country confinement index.

The paper looks at six sectors, shown in the chart below according to their share of global CO2 emissions from fossil fuels and cement. These are electricity and heat (44%); industry (22%); surface transport (20%); homes (6%); public buildings and commerce (4%); and aviation (3%).

Share of global CO2 emissions from fossil fuels and cement due to each of six sectors of the economy. Source: Le Queré et al. (2020). Chart by Carbon Brief.
Share of global CO2 emissions from fossil fuels and cement due to each of six sectors of the economy. Source: Le Queré et al. (2020). Chart by Carbon Brief.

Notably, this split highlights the limited potential for individual actions to radically reduce global emissions, in contrast to the societal choices that govern CO2 from electricity and industry.

The split in global CO2 emissions, shown above, is then broken down further for each of 69 countries, 50 US states and 30 Chinese provinces, which account for 97% of the global total. This gives industrial CO2 emissions in Italy, for example, on an average day in 2019.

The paper then uses 669 datasets, covering each of these sectors over time, and classified according to the level of confinement in place at each point. For example, this might be daily reports on mobility, traffic and congestion to measure “activity” for surface transport.

This daily data is then adjusted to remove effects unrelated to coronavirus, such as the mild northern hemisphere winter or the day of the week.

Under the highest level of confinement, surface transport “activity” fell by 50% on average, the paper finds. This is shown in green in the chart, below, where each dot represents a single data point, open circles show the average and the horizontal lines show the variability between datasets. The chart also shows changes in activity for electricity, industry, homes and aviation.

Change in sectoral “activity” under the highest level of coronavirus confinement, percent, relative to an average day in 2019. Each dot represents a single datapoint and open circles show the average. Reading from left to right, the chart shows activity changes in the power sector (purple), industry (yellow), surface transport (green), homes (blue) and aviation (pink). Source: Le Queré et al. (2020).
Change in sectoral “activity” under the highest level of coronavirus confinement, percent, relative to an average day in 2019. Each dot represents a single datapoint and open circles show the average. Reading from left to right, the chart shows activity changes in the power sector (purple), industry (yellow), surface transport (green), homes (blue) and aviation (pink). Source: Le Queré et al. (2020).

For electricity, the paper looks at total daily demand in Europe, the US and India, finding an average 15% reduction in demand under strict lockdown. In industry, the paper looks at daily coal use in China reported by Carbon Brief and weekly reports on steel production in the US.

For homes, the paper draws on figures from UK smart meters. And for aviation – the most strongly affected sector – it uses data on domestic and international departures around the world.

As the chart above shows, the analysis relies on relatively sparse information for industry, whereas activity levels in transport draw on a wider range of datasets.

Emissions estimates

The team then uses the average change in activity, for each sector and level of confinement, to build up an estimate of daily CO2 emissions around the world.

For example, on days when Turkey is under the strictest lockdown, the analysis assumes that its power-sector CO2 emissions would fall by 15% compared with the average in 2019 – and those from surface transport by 50%.

When Turkey shifts from “confinement index three”, the strictest controls, down to level two, its power-sector emissions would be 5% below usual levels and transport 40% lower. For each confinement level, the same percentage reductions are assumed to apply to all countries.

This approach means that the team only needed to know when each country, state or province changed its coronavirus lockdown from one “confinement level” to another, as well as the daily average level of CO2 emissions from each sector in 2019.

Putting all of these countries and lockdown levels together, the paper finds that the cut in daily global CO2 emissions peaked at -17% on 7 April, shown in the figure, below. Across the first four months of 2020, emissions fell by 1,048MtCO2 (8.6%), compared with 2019 levels.

Estimated daily global CO2 emissions from fossil fuels and cement, million tonnes (MtCO2 per day). The left panel shows emissions from 1970-2020 and the right panel shows the first four months of 2020. Source: Le Queré et al. (2020).
Estimated daily global CO2 emissions from fossil fuels and cement, million tonnes (MtCO2 per day). The left panel shows emissions from 1970-2020 and the right panel shows the first four months of 2020. Source: Le Queré et al. (2020).

Within this global total, the largest impacts were in China, where emissions fell by an estimated 242MtCO2 in the first four months of the year, followed by the US (-207MtCO2), Europe (-123MtCO2) and India (-98MtCO2).

Dr Glen Peters, research director at Norwegian climate institute Cicero and one of the study authors, tells Carbon Brief that while the approach was designed around the current crisis, the team has gathered the “raw material” to make daily CO2 estimates on an ongoing basis. He says:

“We have discussed more ‘real-time’ estimates for sometime and there are many advantages. We are illustrating one advantage with our paper to see the consequences of particular policy interventions in near real time.”

But Peters notes that some of the daily data they used – the urban congestion index series from satnav maker TomTom, for example – is only being made publicly available during the current crisis and might be made private again in the future. He also asks whether daily data is truly needed, or whether weekly or even monthly estimates might be sufficient for scientists and policymakers.

Dr Hannah Ritchie, head of research at website Our World in Data and one of the reviewers of the new study, tells Carbon Brief:

“I think daily CO2 estimates would be incredibly useful, particularly for motivating policy action and pressure…Climate change already has the classic long-termism problem, but this is exacerbated by the fact that we get a figure on CO2 emissions published once a year, as a marker of how each country is doing.”

If daily CO2 estimates were publicly available for all countries, it would become possible to actively track progress, she says, adding: “You can have a counter on the news, or an app or dashboard on your phone – just like we do with other metrics like stock markets.”

Alternative analyses

Today’s research is not the first to analyse the CO2 impacts of the coronavirus crisis, although it is the first to have completed its passage through peer review.

Another paper, which is currently in review, also attempts to estimate daily global CO2 emissions in close to real time. This work finds the coronavirus crisis cut global emissions by -542MtCO2 below 2019 levels in the first quarter of 2020, similar to the -530MtCO2 figure from today’s paper.

In mid-February, Carbon Brief published an analysis showing that emissions in China were temporarily cut by 200MtCO2 (25%) over a four-week period, during the height of the restrictions. The new study finds that the cut in Chinese emissions peaked at 24%.

Today’s research also includes estimates of the emissions impact in 2020 as a whole, based on three scenarios for the length of lockdowns around the world. These entail CO2 emissions falling by between -4% and -8%, depending on how the crisis plays out. This range is consistent with estimates published in April byCarbon Brief (-6%) and the International Energy Agency (-8%).

***

Daily global CO2 emissions ‘cut to 2006 levels’ during height of coronavirus crisis

Simon Evans, Carbon Brief, 19 May 2020

Published under a CC license. You are welcome to reproduce unadapted material in full for non-commercial use, credited ‘Carbon Brief’ with a link to the article. 

our daily bread (& rice) | wheat, rice, & CO2

Plants need carbon dioxide to live, but its effects on them are complicated.

As the level of carbon dioxide in the air continues to rise because of human activity, scientists are trying to understand how the plants we eat are being affected.

According to recent studies, rice, wheat, and other staple crops lose nutrients when exposed to levels of carbon dioxide in the atmosphere expected by 2050.

Samuel Myers, principal research scientist at Harvard’s School of Public Health and director of the Harvard-based Planetary Health Alliance and colleagues have conducted studies in which crops are grown bathed in air that simulates the predicted atmospheric conditions expected both by 2050 and by the end of the 21st century. The studies showed declines in protein, iron, and zinc in wheat, and declines in iron and zinc in soybeans and field peas.

The scientists compared nutrient levels in field crops grown in ambient CO2 levels, about 380-390 parts per milliion (ppm) at the time of the work, with those grown in the elevated CO2 levels expected by 2050. The latter level, 545-585ppm, is expected even if substantial curbs on emissions are put in place by the world’s governments. In order to take account of variable growing conditions, the researchers analysed 41 different strains grown in seven locations on three different continents.

Wheat grown in high CO2 levels had 9% less zinc and 5% less iron, as well as 6% less protein, while rice had 3% less iron, 5% less iron and 8% less protein. Maize saw similar falls while soybeans lost similar levels of zinc and iron but, being a legume not a grass, did not see lower protein.

The precise biological and physiological mechanisms that cause nutrient levels to fall when CO2 levels increase are not yet well understood.

See:

“Major crops lose nutrients when grown in elevated carbon dioxide levels,” Harvard School of Public Health, 19 June 2018

“As Carbon Dioxide Levels Rise, Major Crops Are Losing Nutrients,” Merrit Kennedy, NPR, 19 June 2018

“Climate change making food crops less nutritious, research finds,” Damian Carrington, The Guardian, 7 May 2014

Increasing CO2 threatens human nutrition,” Samuel S. Myers, Antonella Zanobetti, Itai Kloog, Peter Huybers, Andrew D. B. Leakey, Arnold J. Bloom, Eli Carlisle, Lee H. Dietterich, Glenn Fitzgerald, Toshihiro Hasegawa, N. Michele Holbrook, Randall L. Nels, Michael J. Ottman, Victor Raboy, Hidemitsu Sakai, Karla A. Sartor, Joel Schwartz, Saman Seneweera, Michael Tausz & Yasuhiro Usui, Nature, International Journal of Science, 7 May 2014

your money, your life, your choice | California, cars, CO2

California, in so many ways, could learn from the US Northeast. 

To reduce CO2 and and greenhouse gas emissions from cars, a continuing and increasing issue in California and elsewhere, cities need data—ways to accurately measure emissions, pinpoint sources, and monitor change over time; cities need to know how much CO2 they are producing and reducing.

A tool called ACES (Anthropogenic Carbon Emissions System) was developed in response to the requirement for data by researchers at Boston University and Harvard. ACES offers finely-grained maps of CO2 emissions, with a resolution of 1km2, totaled hourly.

As we know, per our atmosphere – the air, its particular mix of gaseous elements, and its temperatures, together vital to life, inclusive of human, animal, and plant – CO2 and other greenhouse gases are an issue, in many ways.

California has “targets” to meet by the year 2020 for limiting the greenhouse gases associated with the driving that people do on a daily basis. The approach to greenhouse gases associated with the driving that people do on a daily basis has a heightened level of complexity in California. Driving a car, rather than availing oneself of public transportation such as a subway, metro, or bus, is a norm that people are highly unwilling and actually afraid to examine and rethink. The many localities within the state have made limited investment in public transportation in significant part because taking such modes of transportation is largely considered to be beneath the dignity – whether personal, social, or professional – of and compromising to anybody with a sense of self esteem.

While the “hope” has been that climate emissions might be curbed largely by promoting regional planning of denser development along transit lines ( S.B. 375, the Sustainable Communities and Climate Protection Act, a landmark 2008 deal, with the California legislature recognizing the critical role of integrated transportation, land use, and housing decisions to meet state climate goals), the California Air Resources Board 2018 Progress Report released in November documents that driving of cars has skyrocketed statewide during the years following the recession of 2008 – 2009 through 2016.

A “key finding of this report is that California is not on track to meet the greenhouse gas reductions expected under SB 375 for 2020, with emissions from statewide passenger vehicle travel per capita increasing and going in the wrong direction” (page 4) and “emissions from the transportation sector continuing to rise despite increases in fuel efficiency and decreases in the carbon content of fuel” (page 5).

Top air quality officials in California state they currently have no way to fully assess whether regions from San Diego to Sacramento are on track to meet 2020 targets for reigning in greenhouse gases associated with daily driving. While “greenhouse gas emissions considered under the SB 375 program reflect carbon-dioxide (CO2) emissions only from light-duty passenger vehicles” (page 21, footnote 22), the California Air Resources Board 2018 Progress Report states, “SB 375 passenger vehicle greenhouse gas emissions reductions cannot be directly measured because greenhouse gas emissions come from many sources” (page 21).

Air board officials said that while they tracked the key metric of vehicle miles traveled, or VMT, available statewide through fuel sales, that same information wasn’t available regionally. Without that, officials say there is no consistent way to extrapolate greenhouse gas emissions from driving for each region.

There’s no unifying way to bring it all together and say ‘You’re at this particular performance metric,’” said Nicole Dolney, chief of the air board’s transportation planning branch. “Our hope was that we would have VMT data that we could rely on, but it wasn’t there.”

So what might California learn from ACES?

For cities to cut down CO2, they need to know how much they are producing and reducing. Most cities get rough estimates with “carbon calculators” that account for the size and population of a city, electricity used, and an estimate of how many cars zip (or crawl) through the city streets.

“The calculation would be fine except for all those cars. Cars are the hardest part of the emissions equation to quantify. They are moving all the time at different speeds, and there are different cars on the road at different times of day.”

“There are other factors to consider. There’s the make of the car, of course: a Toyota Prius gives off less CO2 than a Chevy Silverado. There’s also the speed; most cars give off the least CO2 when cruising in a “sweet spot” between 40 and 60 miles per hour.”

(Conor Gately, co-developer of ACES; PhD, Geography and Environment, Boston University, 2016; lead author on a study examining cities, traffic, and CO2, published in the Proceedings of the National Academy of Sciences (PNAS) in April 2015.)

ACES (Anthropogenic Carbon Emissions System) has been developed by Lucy Hutyra of Boston University and Conor Gately, now a postdoctoral associate working jointly at Boston University and Harvard. A tool for measuring and mapping CO2 emissions, ACES offers finely-grained maps of CO2 emissions, with a resolution of 1km2, totaled hourly, is relevant and could be helpful to the cities and the state of California.

Cities have the political will to change emissions, and they have policy levers to pull,” says Lucy Hutyra, a Boston University College of Arts & Sciences (CAS) associate professor of Earth and environment. And because cities are responsible for 70 percent of greenhouse-gas emissions, according to the United Nations, their actions matter. But to take effective action, cities need data—ways to accurately measure emissions, pinpoint sources, and monitor change over time. And so Hutyra and her colleague Conor Gately have developed a tool called ACES, for Anthropogenic Carbon Emissions System, that offers the finest-grained maps of CO2 emissions in the Northeastern US to date, with a resolution of 1km2, totaled hourly. The tool, funded by NASA’s Carbon Monitoring System and detailed in the October 12, 2017, issue of the Journal of Geophysical Research—Atmospheres, could provide valuable data to cities nationwide.

‘The goal was to take the finest grained, most local data possible and build a ‘bottom-up’ inventory,” says Gately. The research team started by divvying up the sources of emissions on a giant whiteboard. “We did every sector of emissions of CO2,” he says. “Roads, residential buildings, commercial buildings, industrial facilities, power plants, airports, marine ports, shipping, and railway.” The group searched for data from 2011, scouring every source they could find: city and country records, household fuel estimates, EPA databases, hundreds of traffic sensors located around New England. All of these data, when combined with the amount of fossil fuels consumed in the region (gasoline, diesel, home heating oil, coal and natural gas for power generation), allowed the team to calculate CO2 emissions for all of the major sources. The team then calculated emissions for every hour of the year.

Gately, working with a three-year, $1.5 million grant from the National Oceanic and Atmospheric Administration, is now expanding ACES to cover the entire continental United States and meeting with government, scientific, and policy stakeholders to help create a core set of methods and data products.”

DARTE might also be helpful. DARTE, the Database of Road Transportation Emissions (Conor Gately, Lucy Hutyra, Ian Sue Wing) is available for free download from the Harvard Dataverse

Funded by grants from the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Energy (DOE), Gately has developed a more precise way to tally CO2 emissions from vehicles. He used 33 years of traffic data to build the Database of Road Transportation Emissions (DARTE), which displays CO2 data for the contiguous US on a finer scale than ever before—a one-kilometer grid. (He hopes to add Alaska and Hawaii later.) Available for free download, DARTE could change the way cities and states measure greenhouse gas emissions.

The science is coming together to bring us very fine measurements in a way never possible before,” says Lucy Hutyra, an assistant professor of earth and environment and a coauthor on the PNAS study. Hutyra says that DARTE complements NASA’s Orbiting Carbon Observatory 2, which is collecting global data on atmospheric carbon dioxide. “We need good bottom-up data to match what we’re measuring looking down from space. That’s what we need to really advance greenhouse gas policies.”

See:

2018 Progress Report: California’s Sustainable Communities and Climate Protection Act,” California Air Resources Board, November 2018

Regions across California likely off the hook for 2020 caps on greenhouse-gas emissions from driving,” Joshua Emerson Smith, The San Diego Union-Tribune, 27 November 2018

Poor forest management: Trump oversimplifies state’s fire problem,” Readers React, The San Diego Union-Tribune, 20 November 2018

A Fine-Tuned Map for CO2,” Barbara Moran, Boston University Research, 26 October 2017

A New Map for Greenhouse Gas,” Barbara Moran, Boston University Research, 10 April 2015

Gately, Conor, K.; Hutyra, Lucy, R.; Sue Wing, Ian, 2015, “Cities, traffic, and CO2: A multi-decadal assessment of trends, drivers, and scaling relationships“, https://doi.org/10.7910/DVN/28999, Harvard Dataverse, V6

 

the compounding costs of California’s year-after-year wildfires

The compounding costs of California’s year-after-year wildfires are making it increasingly difficult for any party to absorb the expenses.

So observes Mark Cooper, Yale PhD, former Yale University and Fulbright Fellow, and Senior Research Fellow for Economic Analysis at the Institute for Energy and the Environment of Vermont Law School currently working on Energy Assessment.

PG&E electrical equipment, including power lines and poles, has been found to be responsible for at least 17 of 21 major Northern California fires of autumn 2017.

While the cause of California’s Camp Fire has not yet been determined, PG&E, one of California’s largest utilities, disclosed to the SEC on 9 November that an outage and damage to a transmission tower were reported in the area shortly before the fire started.

In the SEC Form 8-K of 9 November, PG&E declared that it may face billions of dollars in potential liabilities, far more than its insurance would cover, for the wildfires of 2018.

The Form 8-K reads, in pertinent part:

On November 8, 2018, a wildfire began near the city of Paradise, Butte County, California (the “Camp Fire”), located in the service territory of the Utility.  The California Department of Forestry and Fire Protection’s (“Cal Fire”) Camp Fire Incident Report dated November 13, 2018, 7:00 a.m. Pacific Time (the “incident report”), indicated that the Camp Fire had consumed 125,000 acres and was 30% contained.  Cal Fire estimates in the incident report that the Camp Fire will be fully contained on November 30, 2018.  In the incident report, Cal Fire reported 42 fatalities.  The incident report also indicates the following: structures threatened, 15,500; single residences destroyed, 6,522; single residences damaged, 75; multiple residences destroyed, 85; commercial structures destroyed, 260; commercial structures damaged, 32; and other minor structures destroyed, 772.

The cause of the Camp Fire is under investigation. On November 8, 2018, the Utility submitted an electric incident report to the California Public Utilities Commission (the “CPUC”) indicating that “on November 8, 2018 at approximately 0615 hours, PG&E experienced an outage on the Caribou-Palermo 115 kV Transmission line in Butte County. In the afternoon of November 8, PG&E observed by aerial patrol damage to a transmission tower on the Caribou-Palermo 115 kV Transmission line, approximately one mile north-east of the town of Pulga, in the area of the Camp Fire. This information is preliminary.” Also on November 8, 2018, acting governor Gavin Newsom issued an emergency proclamation for Butte County, due to the effect of the Camp Fire.

As previously reported, during the third quarter of 2018, PG&E Corporation and the Utility renewed their liability insurance coverage for wildfire events in an aggregate amount of approximately $1.4 billion for the period from August 1, 2018 through July 31, 2019. For more information about wildfire insurance and risks associated with wildfires, see PG&E Corporation and the Utility’s quarterly report on Form 10-Q for the quarter ended September 30, 2018.

While the cause of the Camp Fire is still under investigation, if the Utility’s equipment is determined to be the cause, the Utility could be subject to significant liability in excess of insurance coverage that would be expected to have a material impact on PG&E Corporation’s and the Utility’s financial condition, results of operations, liquidity, and cash flows.

United States Securities and Exchange Commission, Form 8-K, filed by PG&E on 9 November 2018

Citigroup estimates that PG&E’s exposure to liability for at least 17 of 21 major Norther California fires that took place in autumn 2017 is $15 billion. Citigroup estimates further that if it is found responsible for the Camp Fire, PG&E could face another $15 billion in claims. This number could rise, the fire is as yet only partially contained.

PG&E’s customers, both business and residential, may find themselves responsible for covering the bill for the company’s liabilities through higher costs.

California state  legislators took steps this year to shield PG&E and the state’s other investor-owned utilities from overwhelming legal claims, allowing them to pass the expense on to ratepayers.

California Senate Bill 901, signed into law on 21 September 2018, applies to fires beginning in 2019, and to some that occurred in 2017.

The bill enables utilities to sell bonds to cover liability costs and pay them off over time through higher rates.

(14) The existing restructuring of the electrical services industry provides for the issuance of rate reduction bonds by the California Infrastructure and Economic Development Bank for the recovery of transition costs, as defined, by electrical corporations. Existing law authorizes the PUC to issue financing orders, to support the issuance of recovery bonds, as defined, by the recovery corporation, as defined, secured by a dedicated rate component, to finance the unamortized balance of the regulatory asset awarded Pacific Gas and Electric Company in PUC Decision 03-12-035.

This bill would, under specific circumstances, authorize the PUC, upon application by an electrical corporation, to issue financing orders to support the issuance of recovery bonds to finance costs, in excess of insurance proceeds, incurred, or that are expected to be incurred, by an electrical corporation, excluding fines and penalties, related to wildfires, as provided.

SB 901, Dodd. Wildfires.

PG&E’s company shares dropped by more than 20 percent yesterday (Wednesday). More than half of its market value has been lost since late last week as the fires have spread.

Shares of other investor-owned utilities in California, Edison International (operated Southern California Edison) and Sempra Energy (owns San Diego Gas and Electric), dropped earlier this week.

California’s power supply is likely not to be at risk. PG&E could face bankruptcy if it cannot cover the liabilities it faces. Such a bankruptcy would eliminate shareholders’ equity and affect bondholder investments.

See:

California Utility Customers May Be on the Hook for Billions in Wildfire Damage,” Ivan Penn and Peter Eavis, The New York Times, 14 November 2018

SEC Form 8-K filed by PG&E, dated 9 November 2018

California Senate Bill No. 901

It’s your money ・ Hurricanes, flooding, fires. Buying a home?

It’s your money. ・ Hurricanes, flooding, wildfires. Buying a home? Approach your investment with care and due diligence.

Buying a home involves an enormous amount of money, and few people do it often enough to be experts. Given the realities of climate change, the process is now set against a backdrop of radical uncertainty about the very ground you will live on and the air you will breathe.

Given all that, you owe it to yourself to call on every dispassionate expert you can find and grab all available data on any risk you are taking on.”

There is a case for optimism here, where the world comes together and manages to turn the (rising) tides. So if you are a positive thinker or can afford a big loss, by all means bet one of your biggest assets on that possibility.

Otherwise, ask yourself this: Just how much more science and weather will it take before ever larger numbers of people decide to settle in or retire to places that pose less risk? And once they do, do you want to be trying to unload your property in a danger zone so you can afford to join them?

You’re Buying a Home? Have You Considered Climate Change?”, Ron Lieber, The New York Times, 2 December 2016

Research and understand highly pertinent issues such as those that follow below. Examine flood zones, flood insurance, fire zones, and the term Wildland Urban Interface (WUI, indexes the conversion of wildland to developed territory).

In the context of wildfires, a cornerstone of risk evaluation is a metric called the Wildland Urban Interface, or WUI. WUI indexes the conversion of wildland to developed territory. WUI indicates an explosion in wildland development over recent years.

According to the Wildland Urban Interface (WUI) measurement framework, the conversion rate from wildlands to urban development has grown to 4,000 acres per day or close to 2 million acres per year.

The explosion in WUI development increasingly puts homeowners, firefighters and communities at risk of wildfire – a risk that is only growing across the United States as the globe warms and aridification worsens. Since the 1980s, large fires in Northern California have increased by 60 percent. Some forests in the Pacific Northwest have seen a 5,000 percent increase in annual burned land

According to the  2017 Verisk Wildfire Risk Analysis, more than 2 million of the 4.5 million homes at high or extreme risk of wildfire are in California.

We should start by learning which regions are most at risk. Many people assume that most WUI lands fall in the western states. The large eastern and southern states have the most land in the WUI. In 2016, Kansas and Oklahome saw over a million acres burn – that’s an area bigger than the state of Rhode Island. 

The so-called “fire season” has continued to lengthen over the past several decades, and that, since 2000, climate change has been attributed to adding 9 additional days of high fire season. The environmental context facing designers and developers is thus increasingly risky.

We Should Plan Homes to Minimize the Threat of Wildfires,” Jesse M. Keenan and Alice Hill, Newsweek, 21 October 2017

Services & infrastructure

Sources & uses of municipal services such as flood- and fire-prevention, -recovery, and related maintenance services.

How much does the locality (village, town, county, parish, state) pay for public services such as roads, pumps, fire services, drinking water, sewage, etc. Where does the money come from. 

Sources & uses of flood- and fire-prevention and -recovery service funds

How are flood- and fire-prevention and -recovery services financed and funded. How long will flood- and fire-prevention and -recovery services be affordable. How is “affordable” defined.

Home-purchase finance

If you plan to finance a purchase with a mortgage, examine how banks and insurance companies are currently managing flood- and fire-prone properties in their portfolios. What are the trend lines? What steps are being taken by banks and insurance companies vis a vis such properties to protect their balance sheets over the long term.

Insurance

Examine how insurance companies are managing flood- and fire-prone properties in their portfolios. What are the trend lines? What steps are being taken by insurance companies vis a vis such properties to protect their balance sheets over the long term.

What are current premiums? Is the appropriate insurance provided by private companies, by the government? How much will you receive in case of a disaster? Will you receive the full market value of the damaged property?

Sources & uses of energy

Energy matters. Know sources and uses of energy. A house designed and built for low energy unit intensity offers multiple advantages.

Sources, uses, costs, & quality of water

Water matters. Know sources, uses, costs, and quality of water.

Building materials

Building materials and construction matter. Know how and of what materials the house is constructed. Is the house built for fire resilience? Is the house built for flood resilience?

Access & transportation infrastructure

Access matters. How is the neighborhood served by transportation. Can you get to work / school / the doctor’s and dentist’s office / the grocery store and shops / all those important places by foot, bike, bus, train? Must you drive a car? (Think of the CO2 emissions that are exacerbating both the floods and the fires.) Are there multiple lines of access? One road?

Climate change

Research climate change and its effects in your geographical area of interest.

A team & teamwork matter

Develop a team of experts, whom you can trust and consult and with whom you can work together, in your geographical area of interest.

As you delve into these questions, here are links to articles, and there are many more, that provide information, insight, perspective and links to further sources of information.

See:

You’re Buying a Home? Have You Considered Climate Change?”, Ron Lieber, Your Money | The New York Times, 2 December 2016

Flooding Risk Knocks $7 Billion Off Home Values, Study Finds,” Laura Kusisto, The Wall Street Journal, 25 August 2018

Your coastal property has already lost value to sea rise. This site can tell you how much”, Alex Harris, Miami Herald, 25 July 2018

Fire Weather Outlooks (updated daily), NOAA’s National Weather Service Storm Prediction Center, Fire Weather Outlooks

Why does California have so many wildfires?”, Kendra Pierre-Louis, The New York Times, 9 November 2018

Forced Out by Deadly Fires, Then Trapped in Traffic,” Jack Nicas, Thomas Fuller, Tim Arango, The New York Times, 11 November 2018

Jesse M. Keenan in Newsweek: time is now to evaluate design risk, enhance resilience against wildfires,” Travis Dagenais, Harvard University Graduate School of Design, 24 October 2017

We Should Plan Homes to Minimize the Threat of Wildfires,” Jesse M. Keenan and Alice Hill, Newsweek, 21 October 2017

North Carolina, Warned of Rising Seas, Chose to Favor Development,” John Schwartz and Richard Fausset, The New York Times, 12 September 2018

Perils of Climate Change Could Swamp Coastal Real Estate,” Ian Urbina, The New York Times, 24 November 2016

Underwater. Rising Seas, Chronic Floods, and the Implications for US Coastal Real Estate,” Union of Concerned Scientists, 2018

Del Mar stands firm against ‘planned retreat”, Phil Diehl, The San Diego Union-Tribune, 22 May 2018

Can Miami Beach survive global warming?”, David Kamp, Vanity Fair, 10 November 2015

Rising seas, distressed communities, and ‘climate gentrification’: Jesse M. Keenan talks Miami in Vice, Scientific American,” Travis Dagenais, Harvard University Graduate School of Design, 14 August 2017

California Today: Now Comes the Insurance Challenge,” Mike McPhate, The New York Times, 11 October 2017

Climate change and commercial real estate: How resilient is your portfolio?” Jeffrey Kanne, Carlos Madex-Madani, Sam Bendix, Institutional Real Estate, Inc., 1 June 2017

Settling post-catastrophe insurance claims: What agents should know,” Bernice Ross, Inman, 5 September 2017

High Ground Is Becoming Hot Property as Sea Level Rises,” Erika Bolstad, Scientific American, 1 May 2017

Wildland-Urban Interface: Key Issues,” L. Annie Hermansen-Báez, Jennifer Seitz, and Martha C. Monroe, Joint product of InterfaceSouth of the Centers for Urban and Interface Forestry, Southern Research Station, U.S. Forest Service and the University of Florida, Institute of Food and Agricultural Sciences (IFAS). Published March 2009.

Key findings from the 2017 Verisk wildfire risk analysis,” Arindam Samanta, Verisk, 12 July 2017

The Wildland-Urban Interface in the United States,” Susan I. Stewart, Northern Research Station, USDA Forest Service, Evanston, IL (sistewart@fs.fed.us), Volker C. Radeloff, Department of Forestry, University of Wisconsin-Madison, Roger B. Hammer, Department of Sociology, Oregon State University

collections care & engineered resilience

As the markets for works of art, collections care, and engineered resilience in the built environment (private collections, museums – public and private, galleries, fairs, corporate and university collections, etc.) converge, renewable energy will be a factor.

“Underlying property increases in value by virtue of the fact that positive externalities associated with the performance of the resilience investments represents a superior outcome to the status quo – even when netted out by any costs.” (Keenan et.al.)

Companies have signed long-term contracts to purchase solar and wind energy in 28 markets.

Cost declines and efficiency improvements are making renewables cost-competitive with wholesale power prices of more traditional sources of electricity.

While larger corporations are entering into corporate power purchase agreements (PPA),

smaller companies are increasingly pooling electricity demand together to access economies of scale achieved through solar and wind projects.

This is called “aggregation.”

“Aggregation” might be a workable model for entities in the art market concerned about the long-term resilience of structures and care and value of works and collections.


See: 1) Jesse M. Keenan, Thomas Hill, Anurag Gumber, “Climate Gentrification: From Theory to Empiricism in Miami-Dade County,” IOPScience, 23 April 2018; 2) “Corporations Already Purchased Record Clean Energy Volumes in 2018, and It’s Not an Anomaly,” Bloomberg New Energy Finance, 9 August 2018

 

#art #artmarket #museum #privatemuseum #collection #contemporaryart #energy #co2 #wind #solar #renewableenergy #resilience #resilienceengineering #architecture #design #engineering #NewYork #Miami #LosAngeles #London #Paris #Amsterdam #Stockholm #Oslo #Berlin #Vienna #Dubai #HongKong #Shanghai #Beijing #Tokyo #Delhi #realestate

Dan Colen

Dan Colen’s “TBT” (chewing gum and gum wrappers on canvas, in artist’s frame, 2008) sold at the Phillips Auction New York Contemporary Art Day sale of 17 May 2013 for $305,000.

Born in Leonia, New Jersey in 1979 and a 2001 BFA graduate of the Rhode Island School of Design, Dan Colen has long questioned the “editorial decisions artists have to make when creating a scene from scratch on canvas.”

Stepping away from paint as a medium in 2006, Colen started using chewing gum. In 2008 he wrote, “When I first started, the canvases were very sparse … It slowly developed into a more elaborate and involved process. I started adding a lot more gum to each canvas; I would put pieces down, pick them up again, move ’em around, stretch them out, mush ’em together, and mix flavors to create new colors”.

Dan Colen creates his work in a variety of media – painting, sculpture, photography, performance, and installation – from a variety of materials including gum, dirt, grass, tar, feathers, and street trash from the street.

He examines cultural mythologies and archetypes, the boundaries between “high” and “low” art, and the artist’s measure of “control” over the behavior of a given material.

Dan Colen’s recent “Purgatory” (2017) is a work of strong imagination and probing. On view at New York’s Lévy Gorvy Gallery, that now collaborates with Gagosian and Massimo De Carlo to represent Mr. Colen, stylistically it is as if by another artist entirely. Oil on canvas in deep reds and black, the painting draws the viewer frighteningly in along a diagonal through a tunnel of dark clouds back towards a receding glow.

Mr. Colen’s works are in a number of public and private collections including New York’s Whitney Museum of American Art, Washington, D.C.’s Hirshhorn Museum and Sculpture Garden, Buffalo’s Albright-Knox Art GalleryLACMA, the Los Angeles County Museum of Art, Oslo’s Astrup Fearnley Museet, Stockholm’s Moderna Museet, the Dakis Joannou Collection in Athens, Miami’s de la Cruz Collection, and Puerto Rico’s Jiménez-Colón Collection.

 

See:

Dan Colen, “TBT,” 2008, Phillips Contemporary Art Day, New York, 17 May 2013, Lot 125

Dan Colen, Gagosian

Dan Colen, Lévy Gorvy

Lévy Gorvy to Represent Dan Colen in Collaboration with Gagosian, Massimo De Carlo,” Sarah Douglas, ArtNews, 31 May 2017